Zum Hauptinhalt springen

Das Max-von-Laue-Kolloquium

Das Max-von-Laue-Kolloquium der Physikalischen Gesellschaft zu Berlin setzt eine alte Berliner Kolloquiums-Tradition fort, die auf das im Jahre 1843 gegründete Physikalische Kolloquium im Magnus-Haus zurückgeht, aus dem 1845 die Physikalische Gesellschaft zu Berlin hervorging. Aus dem alten Kolloquium im Magnus-Haus wurden die Kolloquien der Friedrich-Wilhelms-Universität in Berlin und der Physikalischen Gesellschaft zu Berlin, und diese Reihe setzte sich in der DDR fort, wo die Physikalische Gesellschaft der DDR zusammen mit der Akademie der Wissenschaften und der Humboldt-Universität zu Berlin Max-von-Laue-Kolloquien veranstaltete.


In diesem Max-von-Laue-Kolloquium spricht

Prof. Dr. Ferenc Krausz,

Max-Planck-Institut für Quantenotptik (Garching bei München) und Ludwig-Maximilians-Universität München.

Titel: Sub-Atomic Motions Probe Human Health - How basic science addresses grand challenges

Im Anschluss an das Kolloquium findet ein Stehempfang auf der Galerie des Hermann-von-Helmholtz-Baus, Physikalisch-Technische Bundesanstalt, Abbestraße 2–12, 10587 Berlin, statt.

Zeit

Beginn
07.11.2024 - 17:15

Ort

Physikalisch-Technische Bundesanstalt - Hörsaal im Hermann-von-Helmholtz-Bau
Abbestraße 2–12
10587 Berlin

Organisation

Prof. Dr. Alejandro Saenz (PGzB)
geschaeftsfuehrer@pgzb.de
(030) 2093-82041

Moderation

Prof. Dr. Mathias Richter (PGzB)
vorsitzender@pgzb.de

Sprecher:innen

  • Prof. Dr. Ferenc Krausz

Basic research rarely helps practitioners directly with their everyday concerns; nevertheless, it stimulates new ways of thinking that have the potential to revolutionize and dramatically improve how practitioners deal with a problem in the future*. This lecture aims at providing an example.

At the dawn of the new millennium, attosecond metrology enabled us to capture sub-atomic motions for the first time. Couple of decades later, the new technology provides insight into sub-atomic motions of electrons and nuclei in molecules.

When triggered and captured in the molecules of human blood, these motions can reveal changes in its molecular composition and provide early signs of unfolding health abberations.

Cost-effective monitoring of human health will address several grand challenges of our time.

*https://en.wikipedia.org/wiki/Basic_research

 


In diesem Max-von-Laue-Kolloquium spricht

Prof. Dr. Stuart Parkin,

Max-Planck-Institut für Mikrostrukturphysik, Halle (Saale).

Titel: Spintronics for massive data memory-storage — past, present and future

Im Anschluss an das Kolloquium findet ein Stehempfang auf der Galerie des Hermann-von-Helmholtz-Baus, Physikalisch-Technische Bundesanstalt, Abbestraße 2–12, 10587 Berlin, statt.

Zeit

Beginn
30.05.2024 - 17:15

Ort

Physikalisch-Technische Bundesanstalt - Hörsaal im Hermann-von-Helmholtz-Bau
Abbestraße 2–12
10587 Berlin

Moderation

Prof. Dr. Mathias Richter (PGzB)
vorsitzender@pgzb.de

Sprecher:innen

  • Prof. Dr. Stuart Parkin

Spintronics is a field of research that harnesses the electron’s spin to create novel materials with exotic properties and devices especially those for storing digital data that is the lifeblood of many of the most valuable companies today. Spintronics has already had two major technological successes with the invention and application of spin-valve magnetic field sensors that allowed for more than a thousand-fold increase in the storage capacity of magnetic disk drives that store ~70% of all digital data today. Just recently, after almost a 25-year exploration and development period, a high performance nonvolatile Magnetic Random Access Memory, that uses magnetic tunnel junction memory elements, became commercially available. A novel spintronics memory-storage technology, Magnetic Racetrack Memory is on track to become the third major success of spintronics. Racetrack Memory is a non-volatile memory in which data is encoded in mobile chiral domain walls that are moved at high speeds by spin currents to and thro along synthetic antiferromagnetic racetracks. In this colloquium I will introduce the basic physics and especially the novel atomically-engineered materials that make possible these three spintronic technologies.