Zum Hauptinhalt springen

An overview of second sound in solid materials

Berliner Physikalisches Kolloquium (BPK)

Zeit

Beginn
07.04.2022 - 18:30

Ort

Online und
Magnus-Haus
Am Kupfergraben 7
10117 Berlin

Moderation

Markus Wagner (TU Berlin)

Sprecher:innen

  • Dr. Sebastian Reparaz

Dateien

Zum Kalender hinzufügen

Im Berliner Physikalischen Kolloquium im Magnus-Haus wird

Dr. Sebastian Reparaz,

Nanostructured Materials Department, Material Science Institute of Barcelona (ICMAB-CSIC), Bellaterra, Spain,

vortragen.

 

Das Kolloquium wird im hybriden Modus durchgeführt. Es können nur eine begrenzte Anzahl von Personen im Magnus-Haus den Vortrag im Präsenzbetrieb verfolgen. Die Anmeldung finden Sie auf der Webseite

Anmeldung Berliner Physikalisches Kolloquium Dr. Sebastian Reparaz 07.04.2022.

Zusätzlich wird der Vortrag über das Internet übertragen. Falls Sie die Zugangsdaten benötigen, verwenden Sie bitte folgenden Link

Zugangsdaten Berliner Physikalisches Kolloquium Dr. Sebastian Reparaz 07.04.2022.

Zusammenfassung

The study of wave-like heat transport in solids (or second sound) received considerable research attention in the 1960s. Surprisingly, its observation remained exclusive to a few materials (e.g., solid He, Bi, and NaF) and for the lower temperature range (T < 15 K) for almost 50 years. Recently, its successful observation at higher temperatures (T > 100 K) in graphite and germanium triggered renewed interest in the field. Developing a clear path to control and exploit such thermal propagation regime has the potential to redefine the strategies to control heat propagation more efficiently. In this talk I will give an overview of the evolution of the field since its discovery in solid materials, with special focus on the latest discoveries. In particular, I will discuss the observation of two different flavors of second sound (drifting and high-frequency second sound), which are found in different experimental conditions. I will discuss the different experimental approaches used for its observation, as well as the theoretical framework used to address its origin and predict its propagation velocity and relaxation time.