Zum Hauptinhalt springen

Breaking Methane – Toward the Economic Utilization of Natural Gas

Berliner Physikalisches Kolloquium (BPK)

Zeit

Beginn
03.05.2018 - 18:30

Ort

Magnus-Haus
Am Kupfergraben 7
10117 Berlin

Moderation

Birgit Kanngießer (TU Berlin)

Sprecher:innen

  • Prof. Dr. Serena DeBeer

Dateien

Zum Kalender hinzufügen

Im Berliner Physikalischen Kolloquium im Magnus-Haus hat

Prof. Dr. Serena DeBeer,

Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, and

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA,

vorgetragen.

Zusammenfassung

Every year, the global community flares about 140 billion m3 of natural gas or 3.5% of the world’s total supply. Abundant and inexpensive, natural gas is dominantly comprised of methane. Methane is often burned, rather than utilized as a fuel, because of the difficulties in transporting relatively small quantities from various remote natural gas sites. This has raised interest in possible gas to liquid conversion processes that would allow for an economically viable utilization of methane. Presently, the industrial processes for converting methane to methanol employ a multiple step process and large costly factories, which do not provide a realistic solution. In contrast, in nature, there are bacteria containing the enzyme methane monooxygenase, which allow for the direct conversion of methane to liquid methanol under ambient conditions. As such, there is great interest in understanding how these enzymes work on an atomic level. In our laboratories, we utilize a variety of X-ray based spectroscopic approaches, combined with theory, to understand the mechanism of these enzymes. The broader goal of our work is to translate these findings into knowledge-based catalytic design.